Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 52, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467937

RESUMO

Parkinson's disease (PD) starts at the molecular and cellular level long before motor symptoms appear, yet there are no early-stage molecular biomarkers for diagnosis, prognosis prediction, or monitoring therapeutic response. This lack of biomarkers greatly impedes patient care and translational research-L-DOPA remains the standard of care more than 50 years after its introduction. Here, we performed a large-scale, multi-tissue, and multi-platform proteomics study to identify new biomarkers for early diagnosis and disease monitoring in PD. We analyzed 4877 cerebrospinal fluid, blood plasma, and urine samples from participants across seven cohorts using three orthogonal proteomics methods: Olink proximity extension assay, SomaScan aptamer precipitation assay, and liquid chromatography-mass spectrometry proteomics. We discovered that hundreds of proteins were upregulated in the CSF, blood, or urine of PD patients, prodromal PD patients with DAT deficit and REM sleep behavior disorder or anosmia, and non-manifesting genetic carriers of LRRK2 and GBA mutations. We nominate multiple novel hits across our analyses as promising markers of early PD, including DOPA decarboxylase (DDC), also known as L-aromatic acid decarboxylase (AADC), sulfatase-modifying factor 1 (SUMF1), dipeptidyl peptidase 2/7 (DPP7), glutamyl aminopeptidase (ENPEP), WAP four-disulfide core domain 2 (WFDC2), and others. DDC, which catalyzes the final step in dopamine synthesis, particularly stands out as a novel hit with a compelling mechanistic link to PD pathogenesis. DDC is consistently upregulated in the CSF and urine of treatment-naïve PD, prodromal PD, and GBA or LRRK2 carrier participants by all three proteomics methods. We show that CSF DDC levels correlate with clinical symptom severity in treatment-naïve PD patients and can be used to accurately diagnose PD and prodromal PD. This suggests that urine and CSF DDC could be a promising diagnostic and prognostic marker with utility in both clinical care and translational research.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Dopa Descarboxilase/genética , Proteômica , Biomarcadores/líquido cefalorraquidiano , Plasma/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Descarboxilases de Aminoácido-L-Aromático
2.
Nature ; 624(7990): 164-172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057571

RESUMO

Animal studies show aging varies between individuals as well as between organs within an individual1-4, but whether this is true in humans and its effect on age-related diseases is unknown. We utilized levels of human blood plasma proteins originating from specific organs to measure organ-specific aging differences in living individuals. Using machine learning models, we analysed aging in 11 major organs and estimated organ age reproducibly in five independent cohorts encompassing 5,676 adults across the human lifespan. We discovered nearly 20% of the population show strongly accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging confers 20-50% higher mortality risk, and organ-specific diseases relate to faster aging of those organs. We find individuals with accelerated heart aging have a 250% increased heart failure risk and accelerated brain and vascular aging predict Alzheimer's disease (AD) progression independently from and as strongly as plasma pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link vascular calcification, extracellular matrix alterations and synaptic protein shedding to early cognitive decline. We introduce a simple and interpretable method to study organ aging using plasma proteomics data, predicting diseases and aging effects.


Assuntos
Envelhecimento , Biomarcadores , Doença , Saúde , Especificidade de Órgãos , Proteoma , Proteômica , Adulto , Humanos , Envelhecimento/sangue , Doença de Alzheimer/sangue , Biomarcadores/sangue , Encéfalo/metabolismo , Disfunção Cognitiva/sangue , Proteoma/análise , Aprendizado de Máquina , Estudos de Coortes , Progressão da Doença , Insuficiência Cardíaca/sangue , Matriz Extracelular/metabolismo , Sinapses/metabolismo , Calcificação Vascular/sangue , Coração
3.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333177

RESUMO

Brain metabolism perturbation can contribute to traits and diseases. We conducted the first large-scale CSF and brain genome-wide association studies, which identified 219 independent associations (59.8% novel) for 144 CSF metabolites and 36 independent associations (55.6% novel) for 34 brain metabolites. Most of the novel signals (97.7% and 70.0% in CSF and brain) were tissue specific. We also integrated MWAS-FUSION approaches with Mendelian Randomization and colocalization to identify causal metabolites for 27 brain and human wellness phenotypes and identified eight metabolites to be causal for eight traits (11 relationships). Low mannose level was causal to bipolar disorder and as dietary supplement it may provide therapeutic benefits. Low galactosylglycerol level was found causal to Parkinson's Disease (PD). Our study expanded the knowledge of MQTL in central nervous system, provided insights into human wellness, and successfully demonstrates the utility of combined statistical approaches to inform interventions.

4.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333337

RESUMO

The integration of quantitative trait loci (QTL) with disease genome-wide association studies (GWAS) has proven successful at prioritizing candidate genes at disease-associated loci. QTL mapping has mainly been focused on multi-tissue expression QTL or plasma protein QTL (pQTL). Here we generated the largest-to-date cerebrospinal fluid (CSF) pQTL atlas by analyzing 7,028 proteins in 3,107 samples. We identified 3,373 independent study-wide associations for 1,961 proteins, including 2,448 novel pQTLs of which 1,585 are unique to CSF, demonstrating unique genetic regulation of the CSF proteome. In addition to the established chr6p22.2-21.32 HLA region, we identified pleiotropic regions on chr3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron-specificity and neurological development. We also integrated this pQTL atlas with the latest Alzheimer's disease (AD) GWAS through PWAS, colocalization and Mendelian Randomization and identified 42 putative causal proteins for AD, 15 of which have drugs available. Finally, we developed a proteomics-based risk score for AD that outperforms genetics-based polygenic risk scores. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.

5.
medRxiv ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35923315

RESUMO

Identification of the plasma proteomic changes of Coronavirus disease 2019 (COVID-19) is essential to understanding the pathophysiology of the disease and developing predictive models and novel therapeutics. We performed plasma deep proteomic profiling from 332 COVID-19 patients and 150 controls and pursued replication in an independent cohort (297 cases and 76 controls) to find potential biomarkers and causal proteins for three COVID-19 outcomes (infection, ventilation, and death). We identified and replicated 1,449 proteins associated with any of the three outcomes (841 for infection, 833 for ventilation, and 253 for death) that can be query on a web portal ( https://covid.proteomics.wustl.edu/ ). Using those proteins and machine learning approached we created and validated specific prediction models for ventilation (AUC>0.91), death (AUC>0.95) and either outcome (AUC>0.80). These proteins were also enriched in specific biological processes, including immune and cytokine signaling (FDR ≤ 3.72×10 -14 ), Alzheimer's disease (FDR ≤ 5.46×10 -10 ) and coronary artery disease (FDR ≤ 4.64×10 -2 ). Mendelian randomization using pQTL as instrumental variants nominated BCAT2 and GOLM1 as a causal proteins for COVID-19. Causal gene network analyses identified 141 highly connected key proteins, of which 35 have known drug targets with FDA-approved compounds. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes (ventilation and death), reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.

6.
J Alzheimers Dis ; 89(1): 193-207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871346

RESUMO

BACKGROUND: The SOMAscan assay has an advantage over immunoassay-based methods because it measures a large number of proteins in a cost-effective manner. However, the performance of this technology compared to the routinely used immunoassay techniques needs to be evaluated. OBJECTIVE: We performed comparative analyses of SOMAscan and immunoassay-based protein measurements for five cerebrospinal fluid (CSF) proteins associated with Alzheimer's disease (AD) and neurodegeneration: NfL, Neurogranin, sTREM2, VILIP-1, and SNAP-25. METHODS: We compared biomarkers measured in ADNI (N = 689), Knight-ADRC (N = 870), DIAN (N = 115), and Barcelona-1 (N = 92) cohorts. Raw protein values were transformed using z-score in order to combine measures from the different studies. sTREM2 and VILIP-1 had more than one analyte in SOMAscan; all available analytes were evaluated. Pearson's correlation coefficients between SOMAscan and immunoassays were calculated. Receiver operating characteristic curve and area under the curve were used to compare prediction accuracy of these biomarkers between the two platforms. RESULTS: Neurogranin, VILIP-1, and NfL showed high correlation between SOMAscan and immunoassay measures (r > 0.9). sTREM2 had a fair correlation (r > 0.6), whereas SNAP-25 showed weak correlation (r = 0.06). Measures in both platforms provided similar predicted performance for all biomarkers except SNAP-25 and one of the sTREM2 analytes. sTREM2 showed higher AUC for SOMAscan based measures. CONCLUSION: Our data indicate that SOMAscan performs as well as immunoassay approaches for NfL, Neurogranin, VILIP-1, and sTREM2. Our study shows promise for using SOMAscan as an alternative to traditional immunoassay-based measures. Follow-up investigation will be required for SNAP-25 and additional established biomarkers.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Humanos , Imunoensaio , Neurogranina/líquido cefalorraquidiano , Curva ROC , Proteínas tau/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...